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Abstract. We present high statistics data on the distribution of shortest path lengths between two
near-by points on the same cluster at the percolation threshold. Our data are based on a new and
very efficient algorithm. Ford = 2 they clearly disprove a recent conjecture by M Portoet al1998
Phys. Rev.E 58 R5205. Our data also provide upper bounds on the probability that two near-by
points are on different infinite clusters.

1. Introduction

Although percolation is a problem which has been studied in great detail during the last few
decades [1], and although many exact results are already known, there are still open questions
which either have not been studied at all, or which have yet to be understood.

In the present paper we study the spreading of percolation in the form of an epidemic
process [2]. In the physics literature, this is often called the Leath growth of clusters [3]. In
this process (which we assume to proceed in discrete time steps) one starts with an infected
seed as a single ‘growth site’, and keeps at each time a list of growth sites. In the next time
step, the list consists of all wettable sites which are nearest neighbours to any of the present
growth sites, while the old list is cancelled. A site is wettable if it had not been a growth site
before, and if it can be occupied (in site percolation), or if it is connected to the present growth
site by an occupied bond (in bond percolation). It is well known that the distribution of growth
sites satisfies at the critical point and for large timest the scaling law [2,4]

ρ(x, t) = 1

t1+2β/νt
φ(r/tz). (1)

Here,β is the well known critical exponent governing the fraction of sites occupied by the
infinite cluster [1],νt is the critical exponent governing the correlation time if one goes off-
critical, andz = ν/νt is the dynamical exponent. The inverse of the latter is often called
dmin. Finally, φ(ζ ) is a universal scaling function. In a purely geometrical interpretation of
equation (1),t is often called the ‘chemical distance’ between the sitex and the origin, as it
counts the number of lattice stepson the clusterneeded to reachx from the origin (i.e. the
length of the shortest ‘chemical path’).

The main problem we want to study is the behaviour of the scaling functionφ(ζ ) for small
ζ . This has been studied recently by Portoet al [5] (see also [6]). As usual one expects a
power law,

φ(ζ ) ∼ ζ g1 ζ → 0. (2)
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Figure 1. Radial density of sites infected at timet , with arbitrary normalization, plotted against
r/tz with z = 0.8844 (corresponding todmin = 1.1307± 0.0004; [10]). In order to enhance the
significance of the plot, each curve corresponds to times∈]0.9t, t ], and the data are divided by
rdmin−β/ν . The curves correspond tot = 60, 100, 140, 200, 300, 500, 800, 1200 and 1800.

The authors of [5] used an analogy with self-avoiding random walks (SAW) to conjecture

g1 = dmin − β/ν (conjectured) (3)

whered is the dimension of the lattice in which the cluster is embedded. This conjecture was
then checked numerically and found to be satisfied†.

There are, however, a number of problems associated with that analysis. The first is that
the analogy with SAW is not very stringent. The analogous equation to (3) was derived by
deGennes [7] using the fact that the endpoint density is the order parameter field in the SAW
problem. Therefore, there is no anomalous critical exponent for the number of self-avoiding
loops (which have no endpoints), and this then gives an expression for the probability that a
SAW nearly forms a loop which formally seems to involve mean-field exponents. The authors
of [5] essentially used these ‘mean-field’ arguments, although there is no analogous underlying
field theory (the field theory for percolation is Potts like [8]), and we see no logical basis for
equation (3).

Similarly, the simulations used in [5] seem far from conclusive. In these simulations,
clusters have been studied witht 6 1800 ind = 2 and witht 6 800 ind = 3. In both cases,
‘more than 100 000’ clusters have been analysed, at several fixed values oft . In figure 1 we
show results ford = 2 obtained by their method. Each curve is based on more than 3× 106

clusters. In addition, in order to enhance the statistics, we have lumped together data with
0.9t < t ′ 6 t in each curve. In this way we arrive at statistics at least 103 larger than those
of [5]. In order to see more details we do not show simple scaling laws as in [5], but show data
multiplied by a suitable power ofr/tz. If equation (3) holds, we expect to see a horizontal line

† In the present paper,ρ(x, t) is the density averaged overall clusters containing the origin, not only over the infinite
one. It seems that the authors of [5] wanted their argument to apply to the incipient infinite cluster only. They
implemented this by analysing only clusters with chemical radiustmax > 2000, from which they presented results
for chemical distances up to 1800. If there were a substantial dependence on the chemical radius, this would lead
to spurious violations of scaling sincetmax introduces a new scale. But this dependence seems to be weak, as also
assumed in [6].
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for smallx-values. Although our data are certainly not in contradiction with this, the very large
statistical and systematic deviations from such a line render any precise statement impossible.

If we want a significant test of equation (3), we have thus to proceed differently. Indeed,
for fixed r there is a much faster numerical method. While the above simulations need a CPU
time∝ t1.6 in order to analyse one cluster, our improved method is faster by roughly one power
of t .

Let us assume we want to test whether two sitesx andy on a regular (hypercubic) lattice
are on the same cluster, and want to measure the length of the shortest connecting path if they
are. Let us assume furthermore that the distance betweenx andy, measured as the sum of
the coordinate distances, is even (the case of odd distances will be discussed below). Instead
of growing a single cluster from a seed at eitherx or y, we grow two clusterssimultaneously,
one starting fromx and the other fromy. We stop the growth in any of the following cases:

(1) Both clusters have a common growth site. If this happens at timet , then there exists a
path of length 2t passing through this growth site and connectingx with y. Since this is
the shortest such path (otherwise the growth would have stopped before), in this case the
chemical distance betweenx andy is 2t .

(2) The cluster growing fromx dies (i.e., has no more growth sites). In that case, there cannot
be a path fromx which is long enough to reachy, andx andy are on different clusters.
Notice that both clusters cannot overlap. They cannot overlap in a site which has the same
chemical distance from both seeds, because they would then have been killed by rule (1)
above. And they cannot overlap in a site which, say, has a smaller chemical distance from
x than fromy. Such a site would first have been wetted byx. In order to be wetted also
fromy, it must have at least one other wettable neighbour which was not wetted, however,
at the time step following its first wetting. This is not possible.

(3) The cluster growing fromy dies.
(4) t reaches some upper boundT specified at the beginning. In this casex andy are either

on different clusters, or the shortest path has length> 2T .

If the distance betweenx andy is odd, we have to replace (1) by:

(1′) A growth site of the first cluster at timet coincides with a growth site of the other cluster
at timet − 1. In this case, the chemical distance is 2t − 1.

Let us denote byp(t) the probability that an event dies because of rule (1). It is equal
to the probability that two sites at a distancer = |x − y| have chemical distance 2t , which
according to equations (1)–(3) is given by

p(t) = ρ(x− y, 2t)∑∞
t ′=0 ρ(x− y, t ′)

∼ t−λ (4)

with

λ = 1 +
2β

νt
+ zg1. (5)

Inserting here the conjectured equation (3), we arrive at

λ = 2 +
β

νt
(conjectured). (6)

During these simulations, we not only collect a histogramn(t) of the timest when rule
(1) applies (which gives the distributionp(t) when normalized), but also a histogram of times
when the growth stops due toany reason or, equivalently, a histogramN(t) indicating how
many events have survived at leastt time steps. The numerN(T ) of events surviving until the
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Figure 2. Histograms ofn(t) and−dN(t)/dt for d = 2 bond percolation withx− y = (1, 1). In
order to reduce statistical fluctuations, data are averaged over intervals [0.98t, t ].

very end gives an upper bound on the probability thatx andy are on differentinfiniteclusters,
Pdiff < N(T )/N . If Pdiff = 0 (which we expect ford < 6; there are several infinite clusters
for anyd > 2, but the chance that they come close to each other should be zero), we expect
N(t) also to decay with a power law,

N(t) ∼ t−µ (7)

with exponentµ 6 λ−1. This should be compared with the power with which single clusters
survive,−β/νt [2,4]. Thus, according to the conjecture, the difference in the powers is exactly
1, suggesting that the present algorithm is faster by one power oft .

In figure 2 we show, ford = 2 andx − y = (1, 1), bothn(t) and|dN(t)/dt |. We used
bond percolation wherepc = 1

2 exactly. We see large deviations from power laws, but these
deviations are the same for both curves. Obviously, if a pair of clusters dies, the chance that it
dies because of rule (1) is finite and tends to a constant, and therefore

µ = λ− 1. (8)

If we accept this, we can obtain the most precise estimate ofλ fromN(t). In any case, even if
this is not correct, we obtain fromN(t) a lower bound onλ. Since we shall see that this lower
bound is larger than the value conjectured by [5], this is sufficient to exclude the conjecture.

Results forN(t) for d = 2 are shown in figure 3, forx−y = (1, 1) and forx−y = (1, 0).
Each curve is based on>109 runs withT = 4000, and took about 90 h CPU time on a
fast workstation. In order to compare it with equation (6), we multipliedN(t) by t1+ β

νt ,
using the exact valueβ = 5

36 [1] and the estimateνt = 1.5075± 0.0004 (corresponding to
dmin = 1.1306± 0.0003). This estimate is based on new simulations which follow exactly
the lines of [10], but have four times higher statistics. It is fully compatible with [10]. We see
clearly that equation (6) is wrong since it gives too small a value. A precise estimate ofλ is
hampered by the very strong corrections to scaling visible in figure 3. Fitting these corrections
by terms∼1/t relative to the leading term and assuming thatn(t) ∝ N(t), we arrive at

µ = 1.1055± 0.0010 λ = 2.1055± 0.0010 g1 = 1.041± 0.001. (9)
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Figure 3. Plot ofN(t)t1.0921 for d = 2 with x− y = (1, 0) (lower curve) and forx− y = (1, 1)
(upper curve). The numbers of configurations were chosen such that both curves coincide for
larget . The exponent 1.0921= 1 + β/νt is such that the curves should become flat for larget ,
according to the conjecture of [5]. Relative statistical errors are≈1/

√
N(t). For t = 4000, they

are≈2.6× 10−3.

Figure 4. Similar to figure 3, but ford = 3. This time we usedβ/νt = 0.3467±0.0028 from [4,9].
Relative errors forN(t = 800) are≈ 3× 10−3.

If we based the analysis onn(t) instead ofN(t), we would getλ = 2.105± 0.002,
g1 = 1.041± 0.003.

A similar analysis ford = 3 is shown in figure 4. This timeT = 800. Forpc we used the
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value 0.248 8126 of [9]. The most precise value ofβ/νt can be obtained either by combining
the value ofz from [4] with the value ofτ from [9,11], or by using directly the estimate ofβ/νt
from [4]. The first givesβ/νt = 0.3472±0.002, the latterβ/νt = 0.345±0.004. In addition,
we performed further simulations using the method of [4]. Together, all these combine to our
final estimateβ/νt = 0.347± 0.002. As seen from figure 4, the corrections to scaling are
even worse than ford = 2, and the disagreement with equation (6) is much less pronounced.
It seems that equation (6) is just barely compatible with our data which give, after taking into
account the corrections to scaling,

µ = 1.353± 0.003 g1 = 0.905± 0.008. (10)

We also tried to fitN(t)by an exponential plus a constant, the latter corresponding to events
where the two starting points are on different infinite clusters. We obtainedPdiff < 10−6 for
d = 2 andPdiff < 2× 10−6 for d = 3, both forx− y = (1, 0) and forx− y = (1, 1).

Finally, we should point out that the advantage of our two-seed algorithm over the naive
one using a single seed is even more pronounced for supercritical percolation. There, the
survival chance for an event decays exponentially witht , while it would not decay at all for
the growth of a single cluster.
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